Learn R Programming

mistat (version 2.0.4)

mistat-package: The Modern Industrial Statistics Package

Description

This R package is providing all the data sets and statistical analysis of Modern Industrial Statistics, with applications using R, MINITAB and JMP by R.S. Kenett and S. Zacks with contributions by D. Amberti, John Wiley and Sons, 2013. This second revised and expanded second edition.

Arguments

Author

Daniele Amberti

Maintainer: Daniele Amberti <amberti@inwind.it>

Details

Package:mistat
Type:Package
Date:2012-08-22
License:GPL >= 2

See Also

Bootstrap Resampling, Quality Control Charts, Operating Characteristics of an Acceptance Sampling Plan, Quality Control Charts, Fractional Factorial 2-level designs.

Examples

Run this code
data(OELECT)
data(OELECT1)

randomizationTest(list(a=OELECT, b=OELECT1), 
                  R=500, calc=mean, 
                  fun=function(x) x[1]-x[2],
                  seed=123)

Ps <- pistonSimulation(
  m = rep(60, 100),
  s = rep(0.02, 100),
  v0 = rep(0.01, 100),
  k = rep(5000, 100),
  p0 = rep(110000, 100),
  t = c(rep(296,35), 296*1.1^(1:65)),
  t0 = rep(360, 100),
  each = 1, 
  seed = 123,
  check = FALSE)

head(Ps)

cusumArl(mean= 0.0, 
         N=100,  
         limit=5000,
         seed=123)

powerCircuitSimulation(seed=123, each=3)

set.seed(123)

Ttf <- rgamma(50, 
              shape=2, 
              scale=100)

Ttr <- rgamma(50, 
              shape=2, 
              scale=1)
              
AvailEbd <- availDis(ttf=Ttf,  
                     ttr=Ttr, 
                     n=1000, seed=123)


RenewEbd <- renewDis(ttf=Ttf, 
                     ttr=Ttr, 
                     time=1000, 
                     n=1000)

Run the code above in your browser using DataLab