A simulator of a voltage conversion power circuit. The target output voltage of the power circuit is 220 volts DC. The circuit consists of 10 resistances labeled A to J, and 3 transistors, labeled K to M. These components can be purchased with different tolerance grades.
powerCircuitSimulation(rsA = 8200, rsB = 220000, rsC = 1000,
rsD = 33000, rsE = 56000, rsF = 5600,
rsG = 3300, rsH = 58.5, rsI = 1000,
rsJ = 120, trK = 130, trL = 100,
trM = 130,
tlA = 5, tlB = 10, tlC = 10,
tlD = 5, tlE = 5, tlF = 5,
tlG = 10, tlH = 5, tlI = 5,
tlJ = 5, tlK = 5, tlL = 10,
tlM = 5,
each = 50, seed = NA)
A data frame, a matrix-like structure, with each
* n rows and with columns:
rsA | numeric | value of rsA |
rsB | numeric | value of rsB |
rsC | numeric | value of rsC |
rsD | numeric | value of rsD |
rsE | numeric | value of rsE |
rsF | numeric | value of rsF |
rsG | numeric | value of rsG |
rsH | numeric | value of rsH |
rsI | numeric | value of rsI |
rsJ | numeric | value of rsJ |
trK | numeric | value of trK |
trL | numeric | value of trL |
trM | numeric | value of trM |
tlA | numeric | value of tlA |
tlB | numeric | value of tlB |
tlC | numeric | value of tlC |
tlD | numeric | value of tlD |
tlE | numeric | value of tlE |
tlF | numeric | value of tlF |
tlG | numeric | value of tlG |
tlH | numeric | value of tlH |
tlI | numeric | value of tlI |
tlJ | numeric | value of tlJ |
tlK | numeric | value of tlK |
tlL | numeric | value of tlL |
tlM | numeric | value of tlM |
volts | numeric | output in volts (\(V\)) |
the resistance (\(\Omega\)) of A. A single value or a vector of length n.
the resistance (\(\Omega\)) of B. A single value or a vector of length n.
the resistance (\(\Omega\)) of C. A single value or a vector of length n.
the resistance (\(\Omega\)) of D. A single value or a vector of length n.
the resistance (\(\Omega\)) of E. A single value or a vector of length n.
the resistance (\(\Omega\)) of F. A single value or a vector of length n.
the resistance (\(\Omega\)) of G. A single value or a vector of length n.
the resistance (\(\Omega\)) of H. A single value or a vector of length n.
the resistance (\(\Omega\)) of I. A single value or a vector of length n.
the resistance (\(\Omega\)) of J. A single value or a vector of length n.
the resistance (\(\Omega\)) of K. A single value or a vector of length n.
the resistance (\(\Omega\)) of L. A single value or a vector of length n.
the resistance (\(\Omega\)) of M. A single value or a vector of length n.
the tolerance of A. It is a number > 0 (e.g. 5% is 5.0)
the tolerance of B. It is a number > 0 (e.g. 5% is 5.0)
the tolerance of C. It is a number > 0 (e.g. 5% is 5.0)
the tolerance of D. It is a number > 0 (e.g. 5% is 5.0)
the tolerance of E. It is a number > 0 (e.g. 5% is 5.0)
the tolerance of F. It is a number > 0 (e.g. 5% is 5.0)
the tolerance of G. It is a number > 0 (e.g. 5% is 5.0)
the tolerance of H. It is a number > 0 (e.g. 5% is 5.0)
the tolerance of I. It is a number > 0 (e.g. 5% is 5.0)
the tolerance of J. It is a number > 0 (e.g. 5% is 5.0)
the tolerance of K. It is a number > 0 (e.g. 5% is 5.0)
the tolerance of L. It is a number > 0 (e.g. 5% is 5.0)
the tolerance of M. It is a number > 0 (e.g. 5% is 5.0)
non-negative integer. Each element of previous parameters is repeated each
times.
a single value, interpreted as an integer. If specified make the simulation replicable.
Daniele Amberti
Factors affect the voltage output \(V\) via a chain of nonlinear equations:
$$V = \frac{136.67(a+\frac{b}{Z(10)})+d(c+e)\frac{g}{f}-h}{1+d\frac{e}{f}+b[frac{1}{Z(10)+0.006(1+\frac{13.67}{Z(10)})]+0.08202a}}$$ where $$a = \frac{Z(2)}{Z(1)+Z(2)}$$ $$b=\frac{1}{Z(12)+Z(13)}(Z(3)+\frac{Z(1)Z(2)}{Z(1)+Z(2)})+Z(9)$$ $$c=Z(5)+Z(7)/2$$ $$d=Z(11)\frac{Z(1)Z(2)}{Z(1)+Z(2)}$$ $$e=Z(6)+Z(7)/2$$ $$f=(c+e)(1+Z(11))Z(8)+ce$$ $$g=0.6+Z(8)$$ $$h=1.2$$ with \(Z(1),\ldots,Z(10)\) resistances in \(\Omega\) of the 10 resistances and \(Z(11),Z(12),Z(13)\) are the \(h_{FE}\) values of three transistors.
Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB and JMP. Wiley.
pistonSimulation
,
simulationGroup
powerCircuitSimulation(seed=123, each=3)
Run the code above in your browser using DataLab