Learn R Programming

mistr (version 0.0.2)

QQplot: Quantile-Quantile Plot

Description

QQplot is a generic function that produces QQ plot of two datasets, distribution and dataset or two distributions.

Usage

QQplot(d1, d2, line = TRUE, col = "#122e94", line_col = "#f28df9",
  xlab = deparse(substitute(d1)), ylab, main = "Q-Q plot", lwd = 2,
  ...)

# S3 method for default QQplot(d1, d2, line = TRUE, col = "#122e94", line_col = "#f28df9", xlab = deparse(substitute(d1)), ylab = deparse(substitute(d2)), main = "Q-Q plot", lwd = 2, ...)

# S3 method for dist QQplot(d1, d2, line = TRUE, col = "#122e94", line_col = "#f28df9", xlab = deparse(substitute(d1)), ylab = ylabe, main = "Q-Q plot", lwd = 2, CI = re, conf = 0.95, n = 100, CI_col = "grey80", ...)

QQnorm(d2, xlab = "Standard Normal", ylab = deparse(substitute(d2)), ...)

Arguments

d1

distribution object or dataset.

d2

distribution object or dataset.

line

if qqline should be included, default: TRUE.

col

color of points, default: '#122e94'.

line_col

color of qqline, default: '#f28df9'.

xlab

xlab, default: deparse(substitute(d1)).

ylab

ylab, default: deparse(substitute(d2)).

main

title, default: 'Q-Q plot'.

lwd

lwd of qqline, default: 2.

...

further arguments to be passed.

CI

if confidence bound should be included.

conf

confidence level for confidence bound, default: 0.95.

n

number of points at which quantile functions are evaluated if two distributions are compared, default: 100.

CI_col

color of confidence bound, default: 'grey80'.

Details

QQplot is able to compare any combination of dataset and distributions.

QQnorm is a wrapper around QQplot, where d1 is set to normdist().

If quantiles of a continuous distribution are compared with a sample, a confidence bound for data is offered. This confidence "envelope" is based on the asymptotic results of the order statistics. For more details see https://en.wikipedia.org/wiki/Order_statistic.

Examples

Run this code
# NOT RUN {
# sample vs sample
QQplot(r(normdist(), 10000), r(tdist(df = 4), 10000))

# distribution vs sample
QQplot(normdist(), r(tdist(df = 4), 10000))

# distribution vs distribution
QQplot(normdist(), tdist(df = 4))
# }

Run the code above in your browser using DataLab