Learn R Programming

mistr (version 0.0.6)

GPD: The Generalized Pareto Distribution

Description

Density, distribution function, quantile function and random generation for the generalized Pareto distribution with location, scale and shape parameters.

Usage

dGPD(x, loc = 0, scale = 1, shape = 0, log = FALSE)

pGPD(q, loc = 0, scale = 1, shape = 0, lower.tail = TRUE, log.p = FALSE)

qGPD(p, loc = 0, scale = 1, shape = 0, lower.tail = TRUE, log.p = FALSE)

rGPD(n, loc = 0, scale = 1, shape = 0)

Value

dGPD gives the density, pGPD gives the distribution function, qGPD gives the quantile function, and

rGPD generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

Arguments

x, q

vector of quantiles.

loc

location parameter.

scale

scale parameter.

shape

shape parameter.

log, log.p

logical; if TRUE, probabilities \(p\) are given as \(log(p)\), default: FALSE.

lower.tail

logical; if TRUE, probabilities are \(P[X \le x]\) otherwise, \(P[X > x]\), default: TRUE.

p

vector of probabilities.

n

number of observations.

Details

The generalized Pareto distribution function with location parameter \(\mu\), scale parameter \(\sigma\) and shape parameter \(\xi\) has density given by $$f(x)=1/\sigma (1 + \xi z)^-(1/\xi + 1)$$ for \(x\ge \mu\) and \(\xi> 0\), or \(\mu-\sigma/\xi \ge x\ge \mu\) and \(\xi< 0\), where \(z=(x-\mu)/\sigma\). In the case where \(\xi= 0\), the density is equal to \(f(x)=1/\sigma e^-z\) for \(x\ge \mu\). The cumulative distribution function is $$F(x)=1-(1+\xi z)^(-1/\xi)$$ for \(x\ge \mu\) and \(\xi> 0\), or \(\mu-\sigma/\xi \ge x\ge \mu\) and \(\xi< 0\), with \(z\) as stated above. If \(\xi= 0\) the CDF has form \(F(x)=1-e^-z\).

See https://en.wikipedia.org/wiki/Generalized_Pareto_distribution for more details.

See Also

GPDdist

Examples

Run this code
dGPD(seq(1, 5), 0, 1, 1)
qGPD(pGPD(seq(1, 5), 0, 1, 1), 0, 1 ,1)
rGPD(5, 0, 1, 1)

Run the code above in your browser using DataLab