The function skewness
computes the skewness, the function kurtosis
computes the kurtosis.
skewness(..., data = NULL, as.na = NULL, check = TRUE)kurtosis(..., data = NULL, as.na = NULL, check = TRUE)
Returns the estimated skewness or kurtosis of x
.
a numeric vector. Alternatively, an expression indicating the
variable names in data
e.g., skewness(x1, data = dat)
.
a data frame when specifying the variable in the argument
...
. Note that the argument is NULL
when specifying
a numeric vector for the argument ...
.
a numeric vector indicating user-defined missing values,
i.e. these values are converted to NA
before conducting
the analysis.
logical: if TRUE
(default), argument specification is checked.
Takuya Yanagida takuya.yanagida@univie.ac.at
The same method for estimating skewness and kurtosis is used in SAS and SPSS.
Missing values (NA
) are stripped before the computation. Note that at
least 3 observations are needed to compute skewness and at least 4 observations
are needed to compute excess kurtosis.
Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS. New York: John Wiley & Sons.
descript
# Set seed of the random number generation
set.seed(123)
# Generate random numbers according to N(0, 1)
x <- rnorm(100)
# Example 1: Compute skewness
skewness(x)
# Example 2: Compute excess kurtosis
kurtosis(x)
Run the code above in your browser using DataLab