#----------------------------------------------------------------------------
# Linear Model
# Estimate linear model
mod.lm <- lm(mpg ~ cyl + disp, data = mtcars)
# Example 1a: Default setting
summa(mod.lm)
# Example 1b: Heteroscedasticity-consistent standard errors
summa(mod.lm, robust = TRUE)
# Example 1c: Print all available results
summa(mod.lm, print = "all")
# Example 1d: Print default results plus standardized coefficient
summa(mod.lm, print = c("default", "stdcoef"))
if (FALSE) {
#----------------------------------------------------------------------------
# Multilevel and Linear Mixed-Effects Model
# Load lme4 package
library(lme4)
# Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")
#------------------
## Two-Level Data
# Cluster-mean centering, center() from the misty package
Demo.twolevel <- center(Demo.twolevel, x2, type = "CWC", cluster = "cluster")
# Grand-mean centering, center() from the misty package
Demo.twolevel <- center(Demo.twolevel, w1, type = "CGM", cluster = "cluster")
# Estimate two-level mixed-effects model
mod.lmer2 <- lmer(y1 ~ x2.c + w1.c + x2.c:w1.c + (1 + x2.c | cluster),
data = Demo.twolevel)
# Example 2a: Default setting
summa(mod.lmer2)
# Example 2b: Print all available results
summa(mod.lmer2, print = "all")
# Example 2c: Print default results plus standardized coefficient
summa(mod.lmer2, print = c("default", "stdcoef"))
# Load lmerTest package
library(lmerTest)
# Re-estimate two-level model using the lme4 and lmerTest package
mod.lmer2 <- lmer(y1 ~ x2.c + w1.c + x2.c:w1.c + (1 + x2.c | cluster), data = Demo.twolevel)
# Example 2d: Default setting, Satterthwaite's method
summa(mod.lmer2)
# Example 2e: Kenward-Roger's method
summa(mod.lmer2, ddf = "Kenward-Roger")
#------------------
## Three-Level Data
# Create arbitrary three-level data
Demo.threelevel <- data.frame(Demo.twolevel, cluster2 = Demo.twolevel$cluster,
cluster3 = rep(1:10, each = 250))
# Cluster-mean centering, center() from the misty package
Demo.threelevel <- center(Demo.threelevel, x1, type = "CWC",
cluster = c("cluster3", "cluster2"))
# Cluster-mean centering, center() from the misty package
Demo.threelevel <- center(Demo.threelevel, w1, type = "CWC",
cluster = c("cluster3", "cluster2"))
# Estimate three-level mixed-effects model
mod.lmer3 <- lmer(y1 ~ x1.c + w1.c + (1 | cluster3/cluster2),
data = Demo.threelevel)
# Example 3a: Default setting
summa(mod.lmer3)
# Example 3b: DPrint all available results
summa(mod.lmer3, print = "all")
#----------------------------------------------------------------------------
# Write Results
# Example 4a: Write Results into a text file
summa(mod.lm, print = "all", write = "Linear_Model.txt")
# Example 4b: Write Results into a Excel file
summa(mod.lm, print = "all", write = "Linear_Model.xlsx")
}
Run the code above in your browser using DataLab