Learn R Programming

⚠️There's a newer version (5.8) of this package.Take me there.

mixAK (version 3.6-1)

Multivariate normal mixture models and mixtures of generalized linear mixed models including model based clustering

Description

This package contains a mixture of statistical methods including the MCMC methods to analyze normal mixtures. Additionally, model based clustering methods are implemented to perform classification based on (multivariate) longitudinal (or otherwise correlated) data. The basis for such clustering is a mixture of multivariate generalized linear mixed models.

Copy Link

Version

Install

install.packages('mixAK')

Monthly Downloads

326

Version

3.6-1

License

GPL (>= 3)

Maintainer

Arnošt Komárek

Last Published

August 6th, 2014

Functions in mixAK (3.6-1)

NMixPredCDFMarg

Marginal (univariate) predictive cumulative distribution function
autolayout

Automatic layout for several plots in one figure
Acidity

Acidity index of lakes in North-Central Wisconsin
GLMM_MCMCprior.b

Handle prior.eps argument of GLMM_MCMC function
SP2Rect

Conversion of a symmetric matrix stored in a packed format (lower triangle only) into a matrix
rSamplePair

Sample a pair (with replacement)
TMVN

Truncated multivariate normal distribution
MVN

Multivariate normal distribution
GLMM_longitDA

Discriminant analysis for longitudinal profiles based on fitted GLMM's
plot.NMixPredCondCDFMarg

Plot computed univariate conditional predictive cumulative distribution functions
NMixPlugCondDensJoint2

Pairwise bivariate conditional densities: plug-in estimate
GLMM_MCMCinit.alpha

Handle init.alpha or init2.alpha argument of GLMM_MCMC function
rRotationMatrix

Random rotation matrix
NMixChainsDerived

Create MCMC chains derived from previously sampled values
Galaxy

Velocities of distant galaxies
MVT

Multivariate Student t distribution
NMixPredDA

Discriminant analysis based on MCMC output from the mixture model
plot.NMixPredCondDensMarg

Plot computed univariate conditional predictive densities
NMixPredDensJoint2

Pairwise bivariate predictive density
fitted.GLMM_MCMC

Fitted profiles in the GLMM model
GLMM_MCMCwrapper

Wrapper to the GLMM_MCMC main simulation.
MatSqrt

Square root of a matrix
PBC910

Subset of Mayo Clinic Primary Biliary Cirrhosis data
PBCseq

Mayo Clinic Primary Biliary Cirrhosis, sequential data
Dirichlet

Dirichlet distribution
GLMM_MCMCifit

Initial (RE)ML fits for the GLMM_MCMC function
NMixPlugDA

Discriminant analysis based on plug-in estimates from the mixture model
plot.NMixPlugDensJoint2

Plot computed marginal pairwise bivariate densities (plug-in estimate)
Faithful

Old Faithful Geyser Data
NMixPredCondDensJoint2

Pairwise bivariate conditional predictive densities
BLA

Best linear approximation with respect to the mean square error (theoretical linear regression).
GLMM_MCMCprior.eps

Handle prior.eps argument of GLMM_MCMC function
GLMM_MCMCprior.alpha

Handle prior.alpha argument of GLMM_MCMC function
MatMPpinv

Moore-Penrose pseudoinverse of a squared matrix
NMixMCMCdata

Data manipulation for the NMixMCMC function
NMixMCMCinitr

Initial component allocations for the NMixMCMC function
NMixPredCondCDFMarg

Univariate conditional predictive cumulative distribution function
NMixPredCondDensMarg

Univariate conditional predictive density
plot.NMixPredDensMarg

Plot computed marginal predictive densities
tracePlots

Traceplots for selected parameters
GLMM_MCMC

MCMC estimation of a (multivariate) generalized linear mixed model with a normal mixture in the distribution of random effects
Enzyme

Enzymatic activity in the blood
NMixMCMC

MCMC estimation of (multivariate) normal mixtures with possibly censored data.
NMixEM

EM algorithm for a homoscedastic normal mixture
GLMM_MCMCdata

Data manipulation for the GLMM_MCMC function
NMixRelabelAlgorithm

Argument manipulation for the NMixRelabel functions
GLMM_MCMCscale.b

Handle scale.b argument of GLMM_MCMC function
plot.NMixPlugCondDensMarg

Plot computed univariate conditional densities (plug-in estimate)
MVNmixture

Mixture of (multivariate) normal distributions
TNorm

Truncated normal distribution
summaryDiff

Posterior summary statistics for a difference of two quantities
getProfiles

Individual longitudinal profiles of a given variable
plot.NMixPredCDFMarg

Plot computed marginal predictive cumulative distribution functions
Y2T

Transform fitted distribution of Y=trans(T) into distribution of T
Tandmob

Signal Tandmobiel data
NMixPredDensMarg

Marginal (univariate) predictive density
NMixChainComp

Chains for mixture parameters
NMixMCMCwrapper

Wrapper to the NMixMCMC main simulation.
NMixPlugDensJoint2

Pairwise bivariate densities: plug-in estimate
plot.NMixPredCondDensJoint2

Plot computed predictive pairwise bivariate conditional densities
cbplot

Plot a function together with its confidence/credible bands
SimData

Simulated dataset
plot.NMixPlugCondDensJoint2

Plot computed pairwise bivariate conditional densities (plug-in estimate)
Wishart

Wishart distribution
plotProfiles

Plot individual longitudinal profiles
BsBasis

B-spline basis
GLMM_MCMCinit.b

Handle init.b or init2.b argument of GLMM_MCMC function
NMixMCMCinity

Initial values of censored observations for the NMixMCMC function
NMixPlugCondDensMarg

Univariate conditional densities: plug-in estimate
NMixPseudoGOF

Pseudo goodness-of-fit test for a normal mixture model
NMixSummComp

Summary for the mixture components
NMixRelabel

Re-labeling the MCMC output of the mixture model
GLMM_MCMCinit.eps

Handle init.eps or init2.eps argument of GLMM_MCMC function
NMixPlugDensMarg

Marginal (univariate) densities: plug-in estimate
TandmobEmer

Signal Tandmobiel data - emergence times
plot.NMixPlugDensMarg

Plot computed marginal predictive densities
generatePermutations

Generate all permutations of (1, ..., K)
plot.NMixPredDensJoint2

Plot computed marginal pairwise bivariate predictive densities