"MixARgen"
A class for MixAR models with arbitrary noise distributions. "MixARgen"
inherits from "MixAR"
.
Objects can be created by calls of the form new("MixARgen",
dist, ...)
or mixARgen(...)
. The two forms are completely
equivalent. The latter is available from version 0.19-15 of package
MixAR.
Most slots are inherited from class "MixAR"
.
prob
:the mixing probabilities, "numeric"
.
order
:the AR orders, "numeric"
.
shift
:intercept terms, "numeric"
.
scale
:scaling factor, "numeric"
.
arcoef
:autoregressive coefficients, an object from class
"raggedCoef"
containing one row for each mixture component.
dist
:Object of class "list"
, representing the
noise distributions. The list contains one element for each
component of the MixAR model or a single element if the
noise distribution is the same for all components.
If the distributions do not contain parameters (e.g. Gaussian or
dist
of the list.
If the distributions do contain parameters the recommended
arrangement is to give a list with components generator
and
param
, such that a call generator(param)
should
produce the required list of distributions.
This is not finalised but if changed, backward compatibility with existing objects will be maintained.
Class "MixAR"
, directly.
signature(model = "MixARgen")
: ...
signature(.Object = "MixARgen")
: ...
signature(model = "MixARgen")
: ...
signature(model = "MixARgen", x = "missing", index = "missing", xcond = "numeric")
: ...
signature(model = "MixARgen", x = "numeric", index = "missing", xcond = "numeric")
: ...
signature(model = "MixARgen", x = "numeric", index = "numeric", xcond = "missing")
: ...
signature(model = "MixARgen", x = "missing", index = "missing", xcond = "numeric")
: ...
signature(model = "MixARgen", x = "numeric", index = "missing", xcond = "numeric")
: ...
signature(model = "MixARgen", x = "numeric", index = "numeric", xcond = "missing")
: ...
signature(model = "MixARgen")
: ...
signature(model = "MixARgen")
: ...
signature(model = "MixARgen")
: ...
showClass("MixARgen")
exampleModels$WL_ibm_gen@dist
noise_dist(exampleModels$WL_ibm_gen, "cdf")
noise_dist(exampleModels$WL_ibm_gen, "pdf")
noise_dist(exampleModels$WL_ibm_gen, "pdf", expand = TRUE)
noise_dist(exampleModels$WL_ibm_gen, "cdf", expand = TRUE)
## data(ibmclose, package = "fma") # for `ibmclose'
pdf1 <- mix_pdf(exampleModels$WL_ibm, xcond = as.numeric(fma::ibmclose))
cdf1 <- mix_cdf(exampleModels$WL_ibm, xcond = as.numeric(fma::ibmclose))
gbutils::plotpdf(pdf1, cdf = cdf1, lq = 0.001, uq = 0.999)
pdf1gen <- mix_pdf(exampleModels$WL_ibm_gen, xcond = as.numeric(fma::ibmclose))
cdf1gen <- mix_cdf(exampleModels$WL_ibm_gen, xcond = as.numeric(fma::ibmclose))
gbutils::plotpdf(pdf1gen, cdf = cdf1gen, lq = 0.001, uq = 0.999)
length(fma::ibmclose)
cdf1gena <- mix_cdf(exampleModels$WL_ibm_gen, xcond = as.numeric(fma::ibmclose)[-(369:369)])
pdf1gena <- mix_pdf(exampleModels$WL_ibm_gen, xcond = as.numeric(fma::ibmclose)[-(369:369)])
gbutils::plotpdf(pdf1gena, cdf = cdf1gena, lq = 0.001, uq = 0.999)
pdf1a <- mix_pdf(exampleModels$WL_ibm, xcond = as.numeric(fma::ibmclose)[-(369:369)])
cdf1a <- mix_cdf(exampleModels$WL_ibm, xcond = as.numeric(fma::ibmclose)[-(369:369)])
gbutils::plotpdf(pdf1a, cdf = cdf1a, lq = 0.001, uq = 0.999)
cdf1gena <- mix_cdf(exampleModels$WL_ibm_gen, xcond = as.numeric(fma::ibmclose)[-(369:369)])
cond_loglik(exampleModels$WL_ibm, as.numeric(fma::ibmclose))
cond_loglik(exampleModels$WL_ibm_gen, as.numeric(fma::ibmclose))
ts1gen <- mixAR_sim(exampleModels$WL_ibm_gen, n = 30, init = c(346, 352, 357), nskip = 0)
plot(ts1gen)
plot(mixAR_sim(exampleModels$WL_ibm_gen, n = 100, init = c(346, 352, 357), nskip = 0),
type = "l")
plot(diff(mixAR_sim(exampleModels$WL_ibm_gen, n = 100, init = c(346, 352, 357), nskip = 0)),
type = "l")
noise_dist(exampleModels$WL_ibm_gen, "Fscore")
prob <- exampleModels$WL_ibm@prob
scale <- exampleModels$WL_ibm@scale
arcoef <- exampleModels$WL_ibm@arcoef@a
mo_WLt3 <- new("MixARgen", prob = prob, scale = scale, arcoef = arcoef,
dist = list(fdist_stdt(3)))
mo_WLt30 <- new("MixARgen", prob = prob, scale = scale, arcoef = arcoef,
dist = list(fdist_stdt(30)))
Run the code above in your browser using DataLab