## model coefficients from Wong&Li (IBM fit)
prob <- exampleModels$WL_ibm@prob # c(0.5439, 0.4176, 0.0385)
sigma <- exampleModels$WL_ibm@scale # c(4.8227, 6.0082, 18.1716)
ar <- exampleModels$WL_ibm@arcoef@a # list(c(0.6792, 0.3208), c(1.6711, -0.6711), 1)
## data(ibmclose, package = "fma") # `ibmclose'
mot30 <- new("MixARgen", prob = prob, scale = sigma, arcoef = ar,
dist = distlist("stdt", c(30, 30, 30)))
mot20_30_40 <- new("MixARgen", prob = prob, scale = sigma, arcoef = ar,
dist = distlist("stdt", c(20, 30, 40)))
mo_t20_t30_norm <- new("MixARgen", prob = prob, scale = sigma, arcoef = ar,
dist = distlist(c("stdt", "stdt", "stdnorm"), c(20, 30)))
## Gaussian components
fi0 <- fit_mixAR(fma::ibmclose, exampleModels$WL_ibm, fix = "shift", crit = 1e-4)
fi0$model
if(FALSE){ # don't run on CRAN to save a couple of seconds
## remove minniter/maxniter below for realistic results.
## std-t components
fi1 <- fit_mixAR(fma::ibmclose, mot30, fix = "shift",
crit = 1e-4, minniter = 1, maxniter = 3)
fi1$model
## 1st and 2nd components std-t, 3rd Gaussian
fi2 <- fit_mixAR(fma::ibmclose, mo_t20_t30_norm, fix = "shift",
crit = 1e-4, minniter = 1, maxniter = 3)
fi2$model
}
Run the code above in your browser using DataLab