pls(X, Y, ncomp = 3,
mode = c("regression", "canonical", "invariant", "classic"),
max.iter = 500, tol = 1e-06, scaleY=TRUE)
NA
s are allowed.NA
s are allowed.X
."regression"
, "canonical"
, "invariant"
or "classic"
.
See Details.FALSE
.pls
returns an object of class "pls"
, a list
that contains the following components:predict
.X
and Y
variates.pls
function fit PLS models with $1, \ldots ,$ncomp
components.
Multi-response models are fully supported. The X
and Y
datasets
can contain missing values.
The type of algorithm to use is specified with the mode
argument. Four PLS
algorithms are available: PLS regression ("regression")
, PLS canonical analysis
("canonical")
, redundancy analysis ("invariant")
and the classical PLS
algorithm ("classic")
(see References).
The number of components to fit is specified with the argument ncomp
.
It this is not supplied, the rank of X
is used. The rank is compute by
using the mat.rank
function.spls
, summary
, mat.rank
,
plotIndiv
, plotVar
.data(linnerud)
X <- linnerud$exercise
Y <- linnerud$physiological
linn.pls <- pls(X, Y, mode = "classic")
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.pls <- pls(X, Y, ncomp = 3)
Run the code above in your browser using DataLab