ipca(X, ncomp = 3, mode = c("deflation","parallel"),
fun = c("logcosh", "exp"),
scale = FALSE, max.iter = 200,
tol = 1e-04, w.init=NULL)
"deflation"
, "parallel"
. Default set to deflation
.logcosh
, see details of FastICA.ipca
returns a list with class "ipca"
containing the following components:sipca
, pca
,
plotIndiv
, plotVar
,
plot3dIndiv
, plot3dVar
and http://www.math.univ-toulouse.fr/~biostat/mixOmics/ for more details..data(liver.toxicity)
# implement IPCA on a microarray dataset
ipca.res <- ipca(liver.toxicity$gene, ncomp = 3, mode="deflation")
ipca.res
# samples representation
plotIndiv(ipca.res, ind.names = liver.toxicity$treatment[, 4], cex = 0.5,
col = as.numeric(as.factor(liver.toxicity$treatment[, 4])))
plot3dIndiv(ipca.res, cex = 0.01,
col = as.numeric(as.factor(liver.toxicity$treatment[, 4])))
# variables representation
plotVar(ipca.res, var.label = TRUE, cex = 0.5)
plot3dVar(ipca.res, rad.in = 0.5, cex = 0.5,
col = as.numeric(as.factor(liver.toxicity$treatment[, 4])))
Run the code above in your browser using DataLab