## fitting the normal mixture models
set.seed(103)
x <- rmixnormal(200, c(0.3, 0.7), c(2, 5), c(1, 1))
data <- bin(x, seq(-1, 8, 0.25))
fit1 <- mixfit(x, ncomp = 2) # raw data
fit2 <- mixfit(data, ncomp = 2) # binned data
fit3 <- mixfit(x, pi = c(0.5, 0.5), mu = c(1, 4), sd = c(1, 1)) # providing the initial values
fit4 <- mixfit(x, ncomp = 2, ev = TRUE) # setting the same variance
## (not run) fitting the weibull mixture models
## x <- rmixweibull(200, c(0.3, 0.7), c(2, 5), c(1, 1))
## data <- bin(x, seq(0, 8, 0.25))
## fit5 <- mixfit(x, ncomp = 2, family = "weibull") # raw data
## fit6 <- mixfit(data, ncomp = 2, family = "weibull") # binned data
## (not run) fitting the Gamma mixture models
## x <- rmixgamma(200, c(0.3, 0.7), c(2, 5), c(1, 1))
## data <- bin(x, seq(0, 8, 0.25))
## fit7 <- mixfit(x, ncomp = 2, family = "gamma") # raw data
## fit8 <- mixfit(data, ncomp = 2, family = "gamma") # binned data
## (not run) fitting the lognormal mixture models
## x <- rmixlnorm(200, c(0.3, 0.7), c(2, 5), c(1, 1))
## data <- bin(x, seq(0, 8, 0.25))
## fit9 <- mixfit(x, ncomp = 2, family = "lnorm") # raw data
## fit10 <- mixfit(data, ncomp = 2, family = "lnorm") # binned data
Run the code above in your browser using DataLab