set.seed(1)
Nobs1 <- 200
Nobs2 <- 250
X1 <- rpe(n = Nobs1, mean = c(0,0), scale = diag(2), beta = 1)
X2 <- rpe(n = Nobs2, mean = c(3,0), scale = diag(2), beta = 2)
x <- as.matrix(rbind(X1, X2))
membership <- c(rep(1, Nobs1), rep(2, Nobs2))
mperun <- EMGr(data=x, initialization=0, iModel="EIIV", G=2:3,
max.iter=500, epsilon=5e-3, label=NULL, modelSet=c("EIIV"),
skewness=FALSE, keepResults=TRUE, seedno=1, scale=FALSE) #use "all" in modelSet for all models
print(mperun)
print(table(membership,mperun$bestmod$map))
msperun <- EMGr(data=x, initialization=0, iModel="EIIV", G=2:3,
max.iter=500, epsilon=5e-3, label=NULL, modelSet=c("EIIV"),
skewness=TRUE, keepResults=TRUE, seedno=1, scale=FALSE) #usually data should be scaled.
#print(msperun)
#print(table(membership,msperun$bestmod$map))
set.seed(1)
data(iris)
membership <- as.numeric(factor(iris[, "Species"]))
label <- membership
label[sample(x = 1:length(membership),size = ceiling(0.6*length(membership)),replace = FALSE)] <- 0
#40% supervision (known groups) and 60% unlabeled.
dat <- data.matrix(iris[, 1:4])
semisup_class_skewed = EMGr(data=dat, initialization=10, iModel="EIIV",
G=3, max.iter=500, epsilon=5e-3, label=label, modelSet=c("VVVE"),
skewness=TRUE, keepResults=TRUE, seedno=5, scale=TRUE)
#table(membership,semisup_class_skewed$bestmod$map)
Run the code above in your browser using DataLab