Learn R Programming

mixbox (version 1.2.3)

dpstable: Monte Carlo approximation for density function of positive alpha-stable distribution.

Description

The density function \(f_{P}(p|\alpha)\), of positive \(\alpha\)-stable distribution is given by (Kanter, 1975): $$ f_{P}(p|\alpha)=\frac{1}{\pi}\int_{0}^{\pi}{\frac{\alpha}{2-\alpha}}a(\theta) p^{-\frac{\alpha}{2-\alpha}-1}a(\theta) \exp\Bigl\{-p^{-\frac{\alpha}{2-\alpha}}a(\theta)\Bigr\}d\theta, $$ where \(0<\alpha \leq 2\) is tail thickness parameter or index of stability and $$ a(\theta)=\frac{\sin\Bigl(\bigl(1-\frac{\alpha}{2}\bigr)\theta\Bigr)\Bigl[\sin \bigl(\frac{\alpha \theta}{2}\bigr)\Bigr]^{\frac{\alpha}{2-\alpha}}}{[\sin(\theta)]^{\frac{2}{2-\alpha}},} $$ for \(0<\theta < \pi\). We use the Monte Carlo method for approximating \(f_{P}(p|\alpha)\).

Usage

dpstable(x, param)

Value

The density function of positive \(\alpha\)-stable distribution at point \(x\).

Arguments

x

point at which density value is desired.

param

tail index parameter.

Author

Mahdi Teimouri

References

M. Kanter, (1975). Stable densities under change of scale and total variation inequalities, Annals of Probability, 3(4), 697-707.

Examples

Run this code
# \donttest{
x <- 2
param <- 1.5
dpstable(x, param)
# }

Run the code above in your browser using DataLab