The density function \(f_{T}(t|\alpha, \beta)\), of polynomially tilted \(\alpha\)-stable distribution is given by (Devroye, 2009): $$f_{T}(t | \alpha, \beta)=\frac{\Gamma(1+\beta)}{\Gamma\Bigl(1+\frac{\beta}{\alpha}\Bigr)}t^{-\beta}f_{P}(t|\alpha),$$ where \(0<\alpha \leq 2\) is tail thickness parameter or index of stability and \(\beta> 0\) is tilting parameter. We note that \(f_{P}(t|\alpha)\) is the density function of a positive \(\alpha\)-stable distribution that has an integral representation (Kanter, 1975): $$ f_{P}(t|\alpha)=\frac{1}{\pi}\int_{0}^{\pi}{\frac{\alpha}{2-\alpha}}a(\theta) t^{-\frac{\alpha}{2-\alpha}-1}a(\theta) \exp\Bigl\{-t^{-\frac{\alpha}{2-\alpha}}a(\theta)\Bigr\}d\theta, $$ where $$ a(\theta)=\frac{\sin\Bigl(\bigl(1-\frac{\alpha}{2}\bigr)\theta\Bigr)\Bigl[\sin \bigl(\frac{\alpha \theta}{2}\bigr)\Bigr]^{\frac{\alpha}{2-\alpha}}}{[\sin(\theta)]^{\frac{2}{2-\alpha}}}, $$ for \(0 < \theta < \pi\).
dptstable(x, param, Dim)The density function of polynomially tilted \(\alpha\)-stable distribution at point \(x\).
point at which density value is desired.
tail thickness parameter.
tilting parameter.
Mahdi Teimouri
M. Kanter, (1975). Stable densities under change of scale and total variation inequalities, Annals of Probability, 3(4), 697-707.
L. Devroye, (2009). Random variate generation for exponentially and polynomially tilted stable distributions, ACM Transactions on Modeling and Computer Simulation, 19(4), tools:::Rd_expr_doi("10.1145/1596519.1596523").
# \donttest{
x <- 2
param <- 1.5
Dim <- 2
dptstable(x, param, Dim)
# }
Run the code above in your browser using DataLab