50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

mixbox (version 1.2.3)

dptstable: Monte Carlo approximation for density function of polynomially tilted alpha-stable distribution.

Description

The density function fT(t|α,β), of polynomially tilted α-stable distribution is given by (Devroye, 2009): fT(t|α,β)=Γ(1+β)Γ(1+βα)tβfP(t|α), where 0<α2 is tail thickness parameter or index of stability and β>0 is tilting parameter. We note that fP(t|α) is the density function of a positive α-stable distribution that has an integral representation (Kanter, 1975): fP(t|α)=1π0πα2αa(θ)tα2α1a(θ)exp{tα2αa(θ)}dθ, where a(θ)=sin((1α2)θ)[sin(αθ2)]α2α[sin(θ)]22α, for 0<θ<π.

Usage

dptstable(x, param, Dim)

Value

The density function of polynomially tilted α-stable distribution at point x.

Arguments

x

point at which density value is desired.

param

tail thickness parameter.

Dim

tilting parameter.

Author

Mahdi Teimouri

References

M. Kanter, (1975). Stable densities under change of scale and total variation inequalities, Annals of Probability, 3(4), 697-707.

L. Devroye, (2009). Random variate generation for exponentially and polynomially tilted stable distributions, ACM Transactions on Modeling and Computer Simulation, 19(4), tools:::Rd_expr_doi("10.1145/1596519.1596523").

Examples

Run this code
# \donttest{
    x <- 2
param <- 1.5
  Dim <- 2
dptstable(x, param, Dim)
# }

Run the code above in your browser using DataLab