50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


mixcure (version 2.0)

summary.mixcure: Summary method for mixture cure models

Description

Summary function will calculate bootstrap variances of the estimates in a mixcure fit if it detects that the variances do not exist. Then it will print estimates, their standard errors, z-scores and p-values from normal distribution

Usage

# S3 method for mixcure
summary(object, R = 100, index = 1:2, ...)

Arguments

object

A mixcure object

R

the number of boot samples required to calculate bootstrap variances.

index

An argument used in censboot function in boot package to specify the columns in data that store survival times and censoring indicators

...

other parameters to be passed into print function

Value

A modified mixcure object with extra components:

varboot

a censboot object

stderr

standard errors of parameters in mixcure

R

the number of bootstrap samples used

Details

censboot in boot package is called to calculate bootstrap variances

See Also

mixcure

Examples

Run this code
# NOT RUN {
data(leukaemia)
# To reduce running time of this example, R is set to 2.
summary(mixcure(Surv(time, cens) ~ transplant, ~ transplant,
data = leukaemia, savedata = TRUE), R = 2)

# }

Run the code above in your browser using DataLab