n <- 100 # sample size
r <- 0.8 # true correlation
### vector input
# Data generation (X1: truncated continuous, X2: continuous)
Z <- mvrnorm(n, mu = c(0, 0), Sigma = matrix(c(1, r, r, 1), nrow = 2))
X1 <- Z[,1]
X1[Z[,1] < 1] <- 0
X2 <- Z[,2]
KendallTau(X1, X2)
Kendall_matrix(X1, X2)
### matrix data input
p1 <- 3; p2 <- 4 # dimension of X1 and X2
JSigma <- matrix(r, nrow = p1+p2, ncol = p1+p2); diag(JSigma) <- 1
Z <- mvrnorm(n, mu = rep(0, p1+p2), Sigma = JSigma)
X1 <- Z[,1:p1]
X1[Z[,1:p1] < 0] <- 0
X2 <- Z[,(p1+1):(p1+p2)]
Kendall_matrix(X1, X2)
Run the code above in your browser using DataLab