Learn R Programming

mixedsde (version 1.0)

EstParamNormal: Maximization Of The Log Likelihood In Mixed Stochastic Differential Equations

Description

Maximization of the loglikelihood of the mixed SDE with Normal distribution of the random effects $dXj(t)= (\alpha_j- \beta_j Xj(t))dt + \sigma a(Xj(t)) dWj(t)$, done with likelihoodNormal

Usage

EstParamNormal(U, V, K, random, estim.fix, fixed = 0)

Arguments

U
matrix of M sufficient statistics U
V
list of the M sufficient statistics matrix V
K
number of times of observations
random
random effects in the drift: 1 if one additive random effect, 2 if one multiplicative random effect or c(1,2) if 2 random effects.
estim.fix
1 if the fixed parameter is estimated, when random 1 or 2 , 0 otherwise
fixed
value of the fixed parameter if known (not estimated)

Value

mu
estimated value of the mean
Omega
estimated value of the variance
BIChere
BIC indicator
AIChere
AIC indicator