Learn R Programming

mixedsde (version 1.0)

plot2compare,Bayes.pred-method: Comparing plot method plot2compare for three Bayesian prediction class objects

Description

Comparison of the results for up to three S4 class Bayes.pred objects

Usage

"plot2compare"(x, y, z, newwindow = FALSE, plot.legend = TRUE, names, ylim, xlab = "times", ylab = "X", ...)

Arguments

x
Bayes.pred class
y
Bayes.pred class
z
Bayes.pred class (optional)
newwindow
logical(1), if TRUE, a new window is opened for the plot
plot.legend
logical(1), if TRUE, a legend is added
names
character vector with names for the three objects appearing in the legend
ylim
optional
xlab
optional, default 'times'
ylab
optional, default 'X'
...
optional plot parameters

References

Dion, C., Hermann, S. and Samson, A. (2016). Mixedsde: an R package to fit mixed stochastic differential equations.

Examples

Run this code
random <- 1; sigma <- 0.1; fixed <- 5; param <- c(3, 0.5)
sim <- mixedsde.sim(M = 20, T = 1, N = 50, model = 'OU', random = random, fixed = fixed,
       density.phi = 'normal',param= param, sigma= sigma, X0 = 0, op.plot = 1)

# here: only 100 iterations for example - should be much more!
estim_Bayes_withoutprior <- mixedsde.fit(times = sim$times, X = sim$X, model = 'OU',
             random, estim.method = 'paramBayes',  nMCMC = 100)
prior <- list( m = c(param[1], fixed), v = c(param[1], fixed), alpha.omega = 11,
            beta.omega = param[2]^2*10, alpha.sigma = 10, beta.sigma = sigma^2*9)
estim_Bayes <- mixedsde.fit(times = sim$times, X = sim$X, model = 'OU', random,
           estim.method = 'paramBayes', prior = prior, nMCMC = 100)
plot2compare(estim_Bayes, estim_Bayes_withoutprior, names = c('with prior', 'without prior'))

Run the code above in your browser using DataLab