- data
A data.frame or data.table with missing values
- m
The number of imputed datasets. Default: 5
- maxit
The number of imputation iterations. Default: 1
- ordinalAsInteger
Whether to convert ordinal factors to integers. By default, ordinalAsInteger = FALSE
. Setting ordinalAsInteger = TRUE
may speed up the imputation process for large datasets.
- pmm.type
The type of predictive mean matching (PMM). Possible values:
NULL
(default): Imputations without PMM;
0
: Imputations with PMM type 0;
1
: Imputations with PMM type 1;
2
: Imputations with PMM type 2;
"auto"
: Imputations with PMM type 2 for numeric/integer variables; imputations without PMM for categorical variables.
- pmm.k
The number of donors for predictive mean matching. Default: 5
- pmm.link
The link for predictive mean matching in binary variables
- initial.num
Initial imputation method for numeric type data:
"normal"
(default);
"mean"
;
"median"
;
"mode"
;
"sample"
.
- initial.int
Initial imputation method for integer type data:
"mode"
(default);
"sample"
.
- initial.fac
Initial imputation method for factor type data:
"mode"
(default);
"sample"
.
- save.models
Whether to save imputation models for imputing new data later on. Default: FALSE
- save.vars
For the purpose of imputing new data, the imputation models for response variables specified in save.vars
will be saved. The values in save.vars
can be a vector of names or indices. By default, only the imputation models for variables with missing values in the original data will be saved (save.vars = NULL
). To save imputation models for all variables, users can specify save.vars = colnames(data)
.
- save.models.folder
Users can specify a directory to save all imputation models. Models will be saved in JSON format by internally calling xgb.save()
, which is recommended by XGBoost.
- verbose
Verbose setting for mixgb. If TRUE
, will print out the progress of imputation. Default: FALSE
.
- xgb.params
A list of XGBoost parameters. For more details, please check XGBoost documentation on parameters.
- nrounds
The maximum number of boosting iterations for XGBoost. Default: 100
- early_stopping_rounds
An integer value k
. XGBoost training will stop if the validation performance has not improved for k
rounds. Default: 10.
- print_every_n
Print XGBoost evaluation information at every nth iteration if xgboost_verbose > 0
.
- xgboost_verbose
Verbose setting for XGBoost training: 0 (silent), 1 (print information) and 2 (print additional information). Default: 0
- ...
Extra arguments to be passed to XGBoost