Learn R Programming

mixgb (version 2.2.3)

Multiple Imputation Through 'XGBoost'

Description

Multiple imputation using 'XGBoost', subsampling, and predictive mean matching as described in Deng and Lumley (2024) . The package supports various types of variables, offers flexible settings, and enables saving an imputation model to impute new data. Data processing and memory usage have been optimised to speed up the imputation process.

Copy Link

Version

Install

install.packages('mixgb')

Monthly Downloads

362

Version

2.2.3

License

GPL (>= 3)

Issues

Pull Requests

Stars

Forks

Maintainer

Yongshi Deng

Last Published

January 17th, 2026

Functions in mixgb (2.2.3)

default_params_cran

Auxiliary function for validating xgb.params compatible with XGBoost CRAN version
impute_new

Impute new data with a saved mixgb imputer object
createNA

Create missing values for a dataset
default_params

Auxiliary function for validating xgb.params
check_data

Sanity check for input data before imputation
mixgb_cv

Use cross-validation to find the optimal nrounds
mixgb

Multiple imputation through XGBoost
mixgb-package

mixgb: Multiple Imputation Through 'XGBoost'
newborn

NHANES III (1988-1994) newborn data
nhanes3

A small subset of the NHANES III (1988-1994) newborn data
show_var

Show multiply imputed values for a single variable
pmm

PMM for numeric or binary variable
pmm.multiclass

PMM for multiclass variable
sortNA

Sort data by increasing number of missing values