Usage
kern.B(x, xi, h, g = 0)
kern.C(x, xi, h)
kern.G(x, xi, h)
kern.O(x, xi, h)
kern.T(x, xi, h)
kfoldCV(h, x, nbsets = 2, w = rep(1, length(x)), lower = mean(x) - 5*sd(x), upper = mean(x) + 5*sd(x))
npMSL_old(x, mu0, blockid = 1:ncol(x), bw=bw.nrd0(as.vector(as.matrix(x))), samebw = TRUE, h=bw, eps=1e-8, maxiter=500, bwiter = maxiter, ngrid = 200, post = NULL, verb = TRUE)
splitsample(n, nbsets = 2)
wbw.kCV(x, nbfold = 5, w = rep(1, length(x)), hmin = 0.1*hmax, hmax = NULL)
Arguments
x
A vector of values to which local modeling techniques are applied.
xi
An n-vector of data values.
h
The bandwidth controlling the size of the window used for the
local estimation around x
.
g
A shape parameter required for the symmetric beta kernel. The default
is g
= 0 which yields the uniform kernel. Some common values are g
= 1 for the
Epanechnikov kernel, g
= 2 for the biweight kernel, and g
= 3 for the triweight kernel.
mu0
See updated arguments in the npMSL
function.
blockid
See updated arguments in the npMSL
function.
bw
See updated arguments in the npMSL
function.
samebw
See updated arguments in the npMSL
function.
h
See updated arguments in the npMSL
function.
eps
See updated arguments in the npMSL
function.
maxiter
See updated arguments in the npMSL
function.
bwiter
See updated arguments in the npMSL
function.
ngrid
See updated arguments in the npMSL
function.
post
See updated arguments in the npMSL
function.
verb
See updated arguments in the npMSL
function.
n
See updated arguments in the npMSL
function.
nbsets
See updated arguments in the npMSL
function.
w
See updated arguments in the npMSL
function.
lower
See updated arguments in the npMSL
function.
upper
See updated arguments in the npMSL
function.
nbfold
See updated arguments in the npMSL
function.
hmin
See updated arguments in the npMSL
function.
hmax
See updated arguments in the npMSL
function.