Learn R Programming

mixture (version 2.2.0)

Mixture Models for Clustering and Classification

Description

An implementation of 14 parsimonious mixture models for model-based clustering or model-based classification. Gaussian, Student's t, generalized hyperbolic, variance-gamma or skew-t mixtures are available. All approaches work with missing data. Celeux and Govaert (1995) , Browne and McNicholas (2014) , Browne and McNicholas (2015) .

Copy Link

Version

Install

install.packages('mixture')

Monthly Downloads

1,407

Version

2.2.0

License

GPL (>= 2)

Maintainer

Paul McNicholas

Last Published

December 18th, 2025

Functions in mixture (2.2.0)

main_loop_vg

VGPCM Internal C++ Call
sx2

Skewed Simulated Data 1
sx3

Skewed Simulated Data 2
mixture

Mixture Models for Clustering and Classification
pcm

Parsimonious Clustering Models
stpcm

Skew-t Parsimonious Clustering Models
main_loop_st

STPCM Internal C++ Call
main_loop_gh

GHPCM Internal C++ Call
main_loop

GPCM Internal C++ Call
main_loop_t

TPCM Internal C++ Call
x2

Simulated Data
z_ig_kmeans

K-means Initialization
tpcm

Student T Parsimonious Clustering Models
z_ig_random_hard

Random Hard Initialization
z_ig_random_soft

Random Soft Initialization
vgpcm

Variance Gamma Parsimonious Clustering Models
dmgh

Density of multivariate Generalized Hyperbolic distribution
gpcm

Gaussian Parsimonious Clustering Models
dmg

Density of multivariate Gaussian distribution
dmst

Density of multivariate Skew-t distribution
dmvg

Density of multivariate Variance Gamma distribution
MAP

Maximum a posterori
ARI

Adjusted Rand Index
e_step

Expectation Step
ghpcm

Generalized Hyperbolic Parsimonious Clustering Models
get_best_model

Best Model Extractor