## Not run:
#
# ##generate expression feature matrix
# sampleVec1 <- c(1, 2, 3, 4, 5, 6)
# sampleVec2 <- c(1, 2, 3, 4, 5, 6)
# featureMat <- expFeatureMatrix(
# expMat1 = ControlExpMat, sampleVec1 = sampleVec1,
# expMat2 = SaltExpMat, sampleVec2 = sampleVec2,
# logTransformed = TRUE, base = 2,
# features = c("zscore", "foldchange",
# "cv","expression"))
#
# ##positive samples
# positiveSamples <- as.character(sampleData$KnownSaltGenes)
# ##unlabeled samples
# unlabelSamples <- setdiff( rownames(featureMat), positiveSamples )
#
# ##selecting an intial set of negative samples
# ##for building ML-based classification model
# ##suppose the PSOL results will be stored in:
# PSOLResDic <- "/home/wanglab/mlDNA/PSOL/"
# res <- PSOL_InitialNegativeSelection(featureMatrix = featureMat,
# positives = positiveSamples,
# unlabels = unlabelSamples,
# negNum = length(positiveSamples),
# cpus = 6, PSOLResDic = PSOLResDic )
#
# ##initial negative samples extracted from unlabelled samples with PSOL algorithm
# negatives <- res$negatives
#
# ## End(Not run)
Run the code above in your browser using DataLab