## Not run:
#
# ##generate expression feature matrix
# sampleVec1 <- c(1, 2, 3, 4, 5, 6)
# sampleVec2 <- c(1, 2, 3, 4, 5, 6)
# featureMat <- expFeatureMatrix( expMat1 = ControlExpMat,
# sampleVec1 = sampleVec1,
# expMat2 = SaltExpMat,
# sampleVec2 = sampleVec2,
# logTransformed = TRUE,
# base = 2,
# features = c("zscore",
# "foldchange", "cv",
# "expression"))
#
# ##positive samples
# positiveSamples <- as.character(sampleData$KnownSaltGenes)
# ##unlabeled samples
# unlabelSamples <- setdiff( rownames(featureMat), positiveSamples )
#
# ##selecting an intial set of negative samples
# ##for building ML-based classification model
# ##suppose the PSOL results will be stored in:
# PSOLResDic <- "/home/wanglab/mlDNA/PSOL/"
# res <- PSOL_InitialNegativeSelection(featureMatrix = featureMat,
# positives = positiveSamples,
# unlabels = unlabelSamples,
# negNum = length(positiveSamples),
# cpus = 6, PSOLResDic = PSOLResDic)
#
# ##initial negative samples extracted from unlabelled samples with PSOL algorithm
# negatives <- res$negatives
#
# ##negative sample expansion
# PSOL_NegativeExpansion(featureMat = featureMat, positives = positiveSamples,
# negatives = res$negatives, unlabels = res$unlabels,
# cpus = 2, iterator = 50, cross = 5, TPR = 0.98,
# method = "randomForest", plot = TRUE, trace = TRUE,
# PSOLResDic = PSOLResDic,
# ntrees = 200 ) # parameters for ML-based classifier
#
# ## End(Not run)
Run the code above in your browser using DataLab