Learn R Programming

mlDNA (version 1.1)

netFeatureMatrix: Generating network feature matrix

Description

This functions generates a feature matrix containing 33 network characteristics by differential network analysis.

Usage

netFeatureMatrix( net1, net2, nodes = NULL, knodes = NULL, cpus = 1, verbose = TRUE, netResFileDic, features = c( "expDistance", "ASC", "corDistance", "AllConnectivity", "PosConnectivity", "NegConnectivity", "closeness", "eccentricity", "eigenvector", "page.rank", "dis2knodes", "closeness2knodes", "eccenticity2knodes") )

Arguments

net1
exp2net output for condition 1.
net2
exp2net output for condition 2.
nodes
a character vector, a set of genes will be analyzed.
knodes
a character vector, a set of interested genes (e.g., known stress-related genes).
cpus
an integrator value, the number of cpus will be used for parallel computing.
verbose
logical value indicate whether the progress information will be output.
netResFileDic
file directory where the network-related results will be output.
features
a character vector specifying the network characteristics will be analyzed.

Value

a numeric matrix, feature matrix generated from network comparision analysis.

References

[1] Chuang Ma, Xiangfeng Wang. Machine learning-based differential network analysis:a case study of stress-responsive transcriptomes in Arabidopsis thaliana. 2013(Submitted).

Examples

Run this code



## Not run: 
#    
#    ##suppose the network-related results are stored at:
#    netResFileDic = "/home/wanglab/mlDNA/network/"
#    
#    ##only consider a subset of genes here
#    genes <- unique ( c( rownames(ControlExpMat)[1:1000], positiveSamples[1:100] ) )
#    res_ControlSub <- exp2net( expmat = ControlExpMat[genes,], method = "GCC", 
#                               pvalue = 0.01, cpus = 6, expDescribe = "Control_Sub", 
#                               connListFlag = TRUE, distmatFlag = TRUE, 
#                               saveType = "bigmatrix", netResFileDic = netResFileDic, 
#                               v = genes, to = genes )
#                    
#     res_StressSub <- exp2net( expmat = SaltExpMat[genes,], method = "GCC", 
#                               pvalue = 0.01, cpus = 6, expDescribe = "Stress_Sub", 
#                               connListFlag = TRUE, distmatFlag = TRUE, 
#                               saveType = "bigmatrix", netResFileDic = netResFileDic, 
#                               v = genes, to = genes )
# 
#     ##generate network feature matrix
#     nodes <- genes
#     knodes <- intersect( genes, positiveSamples )
#     netFeatureMat <- netFeatureMatrix( net1 = res_ControlSub, net2 = res_StressSub, 
#                                        nodes = nodes, knodes = knodes, 
#                                        cpus = 2, verbose = TRUE, 
#                                        netResFileDic = netResFileDic,
#                                        features = c( "expDistance", "ASC", 
#                                              "corDistance", "AllConnectivity", 
#                                              "PosConnectivity", "NegConnectivity", 
#                                              "closeness","eccentricity", 
#                                              "eigenvector", "page.rank", 
#                                              "dis2knodes", "closeness2knodes", 
#                                              "eccenticity2knodes") )
#                                                      
# ## End(Not run)


Run the code above in your browser using DataLab