## Not run:
#
# ##generate expression feature matrix
# sampleVec1 <- c(1, 2, 3, 4, 5, 6)
# sampleVec2 <- c(1, 2, 3, 4, 5, 6)
# featureMat <- expFeatureMatrix(
# expMat1 = ControlExpMat, sampleVec1 = sampleVec1,
# expMat2 = SaltExpMat, sampleVec2 = sampleVec2,
# logTransformed = TRUE, base = 2,
# features = c("zscore", "foldchange", "cv", "expression"))
#
# ##positive samples
# positiveSamples <- as.character(sampleData$KnownSaltGenes)
# ##unlabeled samples
# unlabelSamples <- setdiff( rownames(featureMat), positiveSamples )
# idx <- sample(length(unlabelSamples))
# ##randomly selecting a set of unlabeled samples as negative samples
# negativeSamples <- unlabelSamples[idx[1:length(positiveSamples)]]
#
# ##for random forest, and using five-fold cross validation
# ##for obtaining optimal parameters
# cl <- classifier( method = "randomForest", featureMat = featureMat,
# positiveSamples = positiveSamples, negativeSamples = negativeSamples,
# tunecontrol = tune.control(sampling = "cross", cross = 5),
# ntree = 100 ) #build 100 trees for the forest
#
#
# ##constructed prediction model
# predModel <- cl$best.model
#
# ##perform prediction
# predResult <- predictor(method = "randomForest",
# classifier = predModel,
# featureMat = featureMat)
#
# ## End(Not run)
Run the code above in your browser using DataLab