dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE
),
list(target = sample(0:1, 500, TRUE))
))
fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123
)
cv <- MLCrossValidation$new(
learner = LearnerKnn$new(),
fold_list = fold_list,
seed = 123,
ncores = 2
)
# learner parameters
cv$learner_args <- list(
k = 20,
l = 0,
test = parse(text = "fold_test$x")
)
# performance parameters
cv$predict_args <- list(type = "response")
cv$performance_metric <- metric("bacc")
# set data
cv$set_data(
x = data.matrix(dataset[, -7]),
y = dataset[, 7]
)
cv$execute()
## ------------------------------------------------
## Method `MLCrossValidation$new`
## ------------------------------------------------
dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE
),
list(target = sample(0:1, 500, TRUE))
))
fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123
)
cv <- MLCrossValidation$new(
learner = LearnerKnn$new(),
fold_list = fold_list,
seed = 123,
ncores = 2
)
## ------------------------------------------------
## Method `MLCrossValidation$execute`
## ------------------------------------------------
dataset <- do.call(
cbind,
c(sapply(paste0("col", 1:6), function(x) {
rnorm(n = 500)
},
USE.NAMES = TRUE,
simplify = FALSE
),
list(target = sample(0:1, 500, TRUE))
))
fold_list <- splitTools::create_folds(
y = dataset[, 7],
k = 3,
type = "stratified",
seed = 123
)
cv <- MLCrossValidation$new(
learner = LearnerKnn$new(),
fold_list = fold_list,
seed = 123,
ncores = 2
)
cv$learner_args <- list(
k = 20,
l = 0,
test = parse(text = "fold_test$x")
)
cv$predict_args <- list(type = "response")
cv$performance_metric <- metric("bacc")
# set data
cv$set_data(
x = data.matrix(dataset[, -7]),
y = dataset[, 7]
)
cv$execute()
Run the code above in your browser using DataLab