# binary classification
library(mlbench)
data("PimaIndiansDiabetes2")
dataset <- PimaIndiansDiabetes2 |>
data.table::as.data.table() |>
na.omit()
seed <- 123
feature_cols <- colnames(dataset)[1:8]
param_list_lightgbm <- expand.grid(
bagging_fraction = seq(0.6, 1, .2),
feature_fraction = seq(0.6, 1, .2),
min_data_in_leaf = seq(10, 50, 10),
learning_rate = seq(0.1, 0.2, 0.1),
num_leaves = seq(10, 50, 10),
max_depth = -1L
)
train_x <- model.matrix(
~ -1 + .,
dataset[, .SD, .SDcols = feature_cols]
)
train_y <- as.integer(dataset[, get("diabetes")]) - 1L
fold_list <- splitTools::create_folds(
y = train_y,
k = 3,
type = "stratified",
seed = seed
)
lightgbm_cv <- mlexperiments::MLCrossValidation$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
fold_list = fold_list,
ncores = 2,
seed = 123
)
lightgbm_cv$learner_args <- c(
as.list(
data.table::data.table(
param_list_lightgbm[37, ],
stringsAsFactors = FALSE
),
),
list(
objective = "binary",
metric = "binary_logloss"
),
nrounds = 45L
)
lightgbm_cv$performance_metric_args <- list(positive = "1")
lightgbm_cv$performance_metric <- mlexperiments::metric("auc")
# set data
lightgbm_cv$set_data(
x = train_x,
y = train_y
)
lightgbm_cv$execute()
## ------------------------------------------------
## Method `LearnerLightgbm$new`
## ------------------------------------------------
LearnerLightgbm$new(metric_optimization_higher_better = FALSE)
Run the code above in your browser using DataLab