# \donttest{
# These are similar to the MLMC tests for the original
# 2008 Operations Research paper, using an Euler-Maruyama
# discretisation with 4^l timesteps on level l.
#
# The differences are:
# -- the plots do not have the extrapolation results
# -- two plots are log_2 rather than log_4
# -- the new MLMC driver is a little different
# -- switch to X_0=100 instead of X_0=1
#
# Note the following takes quite a while to run, for a toy example see after
# this block.
N0 <- 1000 # initial samples on coarse levels
Lmin <- 2 # minimum refinement level
Lmax <- 6 # maximum refinement level
test.res <- list()
for(option in 1:5) {
if(option == 1) {
cat("\n ---- Computing European call ---- \n")
N <- 1000000 # samples for convergence tests
L <- 5 # levels for convergence tests
Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)
} else if(option == 2) {
cat("\n ---- Computing Asian call ---- \n")
N <- 1000000 # samples for convergence tests
L <- 5 # levels for convergence tests
Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)
} else if(option == 3) {
cat("\n ---- Computing lookback call ---- \n")
N <- 1000000 # samples for convergence tests
L <- 5 # levels for convergence tests
Eps <- c(0.01, 0.02, 0.05, 0.1, 0.2)
} else if(option == 4) {
cat("\n ---- Computing digital call ---- \n")
N <- 4000000 # samples for convergence tests
L <- 5 # levels for convergence tests
Eps <- c(0.02, 0.05, 0.1, 0.2, 0.5)
} else if(option == 5) {
cat("\n ---- Computing Heston model ---- \n")
N <- 2000000 # samples for convergence tests
L <- 5 # levels for convergence tests
Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)
}
test.res[[option]] <- mlmc.test(opre_l, N, L, N0, Eps, Lmin, Lmax, option = option)
# print exact analytic value, based on S0=K
T <- 1
r <- 0.05
sig <- 0.2
K <- 100
k <- 0.5*sig^2/r;
d1 <- (r+0.5*sig^2)*T / (sig*sqrt(T))
d2 <- (r-0.5*sig^2)*T / (sig*sqrt(T))
if(option == 1) {
val <- K*( pnorm(d1) - exp(-r*T)*pnorm(d2) )
} else if(option == 2) {
val <- NA
} else if(option == 3) {
val <- K*( pnorm(d1) - pnorm(-d1)*k - exp(-r*T)*(pnorm(d2) - pnorm(d2)*k) )
} else if(option == 4) {
val <- K*exp(-r*T)*pnorm(d2)
} else if(option == 5) {
val <- NA
}
if(is.na(val)) {
cat(sprintf("\n Exact value unknown, MLMC value: %f \n", test.res[[option]]$P[1]))
} else {
cat(sprintf("\n Exact value: %f, MLMC value: %f \n", val, test.res[[option]]$P[1]))
}
# plot results
plot(test.res[[option]])
}
# }
# The level sampler can be called directly to retrieve the relevant level sums:
opre_l(l = 7, N = 10, option = 1)
Run the code above in your browser using DataLab