## split iris data in training and test set
n <- nrow(iris)
mixed.set <- sample(1:n)
training.set <- mixed.set[1:(n/2)]
test.set <- mixed.set[(n/2 + 1):n]
## use linear discriminant analysis as learner for classification task
task <- makeClassifTask(data = iris, target = "Species")
learner <- makeLearner("classif.lda", method = "mle")
mod <- train(learner, task, subset = training.set)
## predict class labels for test data
pred <- predict(mod, newdata = iris[test.set,])
head(pred$data)
## predict now probabiliies instead of class labels
learner <- makeLearner("classif.lda", method = "mle", predict.type = "prob")
mod <- train(learner, task, subset = training.set)
pred <- predict(mod, newdata = iris[test.set, ])
head(pred$data)
Run the code above in your browser using DataLab