Learn R Programming

mlr (version 2.0)

tuneParams: Hyperparameter tuning.

Description

Optimizes the hyperparameters of a learner. Allows for different optimization methods, such as grid search, evolutionary strategies, etc. You can select such an algorithm (and its settings) by passing a corresponding control object. For a complete list of implemented algorithms look at TuneControl.

Note that if tranformations are associated with the parameters, the returned result will contain transformed values in the optimal result and the path.

Usage

tuneParams(learner, task, resampling, measures, par.set, control,
  show.info = getMlrOption("show.info"))

Arguments

Value

[TuneResult].

See Also

Other tune: ModelMultiplexer, makeModelMultiplexer; TuneControl, TuneControlCMAES, TuneControlGrid, TuneControlIrace, TuneControlOptim, TuneControlRandom, makeTuneControlCMAES, makeTuneControlGenSA, makeTuneControlGrid, makeTuneControlIrace, makeTuneControlRandom; getTuneResult; makeModelMultiplexerParamSet; makeTuneWrapper; tuneThreshold