
Last chance! 50% off unlimited learning
Sale ends in
Given a Task, creates a model for the learning machine which can be used for predictions on new data.
train(learner, task, subset = NULL, weights = NULL)
(Learner | character(1)
)
The learner.
If you pass a string the learner will be created via makeLearner.
(Task) The task.
(WrappedModel).
# NOT RUN {
training.set = sample(seq_len(nrow(iris)), nrow(iris) / 2)
## use linear discriminant analysis to classify iris data
task = makeClassifTask(data = iris, target = "Species")
learner = makeLearner("classif.lda", method = "mle")
mod = train(learner, task, subset = training.set)
print(mod)
## use random forest to classify iris data
task = makeClassifTask(data = iris, target = "Species")
learner = makeLearner("classif.rpart", minsplit = 7, predict.type = "prob")
mod = train(learner, task, subset = training.set)
print(mod)
# }
Run the code above in your browser using DataLab