
Last chance! 50% off unlimited learning
Sale ends in
Retrieves the current hyperparameter settings of a learner.
getHyperPars(learner, for.fun = c("train", "predict", "both"))
(list). A named list of values.
(Learner)
The learner.
(character(1)
)
Restrict the returned settings to
hyperparameters corresponding to when
the are used (see
ParamHelpers::LearnerParam). Must be a subset of: “train”,
“predict” or “both”. Default is c("train", "predict", "both")
.
This function only shows hyperparameters that differ from the
learner default (because mlr
changed the default) or if the user set
hyperparameters manually during learner creation. If you want to have an
overview of all available hyperparameters use getParamSet()
.
Other learner:
LearnerProperties
,
getClassWeightParam()
,
getLearnerId()
,
getLearnerNote()
,
getLearnerPackages()
,
getLearnerParVals()
,
getLearnerParamSet()
,
getLearnerPredictType()
,
getLearnerShortName()
,
getLearnerType()
,
getParamSet()
,
helpLearnerParam()
,
helpLearner()
,
makeLearners()
,
makeLearner()
,
removeHyperPars()
,
setHyperPars()
,
setId()
,
setLearnerId()
,
setPredictThreshold()
,
setPredictType()
getHyperPars(makeLearner("classif.ranger"))
## set learner hyperparameter `mtry` manually
getHyperPars(makeLearner("classif.ranger", mtry = 100))
Run the code above in your browser using DataLab