See predict.threshold in makeLearner and setThreshold.
For complex wrappers only the top-level predict.type is currently set.
setPredictThreshold(learner, predict.threshold)Learner.
(Learner | character(1))
The learner.
If you pass a string the learner will be created via makeLearner.
(numeric)
Threshold to produce class labels. Has to be a named vector, where names correspond to class labels.
Only for binary classification it can be a single numerical threshold for the positive class.
See setThreshold for details on how it is applied.
Default is NULL which means 0.5 / an equal threshold for each class.
Other predict:
asROCRPrediction(),
getPredictionProbabilities(),
getPredictionResponse(),
getPredictionTaskDesc(),
predict.WrappedModel(),
setPredictType()
Other learner:
LearnerProperties,
getClassWeightParam(),
getHyperPars(),
getLearnerId(),
getLearnerNote(),
getLearnerPackages(),
getLearnerParVals(),
getLearnerParamSet(),
getLearnerPredictType(),
getLearnerShortName(),
getLearnerType(),
getParamSet(),
helpLearnerParam(),
helpLearner(),
makeLearners(),
makeLearner(),
removeHyperPars(),
setHyperPars(),
setId(),
setLearnerId(),
setPredictType()