imputeConstant(const)
for imputation using a constant value,imputeMedian()
for imputation using the median,imputeMode()
for imputation using the mode,imputeMin(multiplier)
for imputing constant values shifted below the minimum
usingmin(x) - multiplier * diff(range(x))
,imputeMin(multiplier)
for imputing constant values shifted above the maximum
usingmax(x) + multiplier * diff(range(x))
,imputeNormal(mean, sd)
for imputation using normally
distributed random values. Mean and standard deviation will be calculated
from the data if not provided.imputeHist(breaks, use.mids)
for imputation using random values
with probabilities calculated usingtable
orhist
.imputeLearner(learner, preimpute)
for imputations using the response
of a classification or regression learner.imputeConstant(const)
for imputation using a constant value,imputeMedian()
for imputation using the median,imputeMode()
for imputation using the mode,imputeMin(multiplier)
for imputing constant values shifted below the minimum
usingmin(x) - multiplier * diff(range(x))
,imputeMin(multiplier)
for imputing constant values shifted above the maximum
usingmax(x) + multiplier * diff(range(x))
,imputeNormal(mean, sd)
for imputation using normally
distributed random values. Mean and standard deviation will be calculated
from the data if not provided.imputeHist(breaks, use.mids)
for imputation using random values
with probabilities calculated usingtable
orhist
.imputeLearner(learner, preimpute)
for imputations using the response
of a classification or regression learner.imputeConstant(const)imputeMedian()
imputeMean()
imputeMode()
imputeMin(multiplier = 1)
imputeMax(multiplier = 1)
imputeUniform(min = NA_real_, max = NA_real_)
imputeNormal(mu = NA_real_, sd = NA_real_)
imputeHist(breaks, use.mids = TRUE)
imputeLearner(learner, features = NULL)
impute
;
makeImputeMethod
;
makeImputeWrapper
; reimpute