Learn R Programming

mlr (version 2.3)

makeUndersampleWrapper: Fuse learner with simple ove/underrsampling for imbalancy correction in binary classification.

Description

Creates a learner object, which can be used like any other learner object. Internally uses oversample or undersample before every model fit.

Note that observation weights do not influence the sampling and are simply passed down to the next learner.

Usage

makeUndersampleWrapper(learner, usw.rate = 1)

makeOversampleWrapper(learner, osw.rate = 1)

Arguments

Value

[Learner].

See Also

Other imbalancy: makeOverBaggingWrapper; oversample, undersample; smote

Other wrapper: CostSensClassifModel, CostSensClassifWrapper, makeCostSensClassifWrapper; CostSensRegrModel, CostSensRegrWrapper, makeCostSensRegrWrapper; makeBaggingWrapper; makeDownsampleWrapper; makeFeatSelWrapper; makeFilterWrapper; makeImputeWrapper; makeMulticlassWrapper; makeOverBaggingWrapper; makePreprocWrapperCaret; makePreprocWrapper; makeSMOTEWrapper; makeTuneWrapper; makeWeightedClassesWrapper