NA
, you
only calculate an aggregated value. If you can define a function that makes sense
for every single training / test set, implement your own Measure
.makeCustomResampledMeasure(id, minimize = TRUE, properties = character(0L),
fun, extra.args = list(), best = NULL, worst = NULL)
Measure
].G1
, G2
,
acc
, auc
, bac
,
ber
, brier
,
cindex
, db
,
dunn
, f1
, fdr
,
featperc
, fn
,
fnr
, fp
, fpr
,
gmean
, gpr
,
mae
, mcc
, mcp
,
meancosts
, measureACC
,
measureAUC
, measureBAC
,
measureBrier
, measureFDR
,
measureFN
, measureFNR
,
measureFP
, measureFPR
,
measureGMEAN
, measureGPR
,
measureMAE
, measureMCC
,
measureMEDAE
, measureMEDSE
,
measureMMCE
, measureMSE
,
measureNPV
, measurePPV
,
measureRMSE
, measureSAE
,
measureSSE
, measureTN
,
measureTNR
, measureTP
,
measureTPR
, measures
,
medae
, medse
,
mmce
, mse
,
multiclass.auc
, npv
,
ppv
, rmse
, sae
,
silhouette
, sse
,
timeboth
, timepredict
,
timetrain
, tn
,
tnr
, tp
, tpr
;
Measure
, makeMeasure
;
makeCostMeasure
; performance