oversample or undersample before every model fit.Note that observation weights do not influence the sampling and are simply passed down to the next learner.
makeUndersampleWrapper(learner, usw.rate = 1)makeOversampleWrapper(learner, osw.rate = 1)
Learner].makeOverBaggingWrapper,
oversample, smoteOther wrapper: makeBaggingWrapper,
makeCostSensClassifWrapper,
makeCostSensRegrWrapper,
makeDownsampleWrapper,
makeFeatSelWrapper,
makeFilterWrapper,
makeImputeWrapper,
makeMulticlassWrapper,
makeMultilabelBinaryRelevanceWrapper,
makeOverBaggingWrapper,
makePreprocWrapperCaret,
makePreprocWrapper,
makeSMOTEWrapper,
makeTuneWrapper,
makeWeightedClassesWrapper