oversample
or undersample
before every model fit.Note that observation weights do not influence the sampling and are simply passed down to the next learner.
makeUndersampleWrapper(learner, usw.rate = 1)makeOversampleWrapper(learner, osw.rate = 1)
Learner
].makeOverBaggingWrapper
,
oversample
, smote
Other wrapper: makeBaggingWrapper
,
makeCostSensClassifWrapper
,
makeCostSensRegrWrapper
,
makeDownsampleWrapper
,
makeFeatSelWrapper
,
makeFilterWrapper
,
makeImputeWrapper
,
makeMulticlassWrapper
,
makeMultilabelBinaryRelevanceWrapper
,
makeOverBaggingWrapper
,
makePreprocWrapperCaret
,
makePreprocWrapper
,
makeSMOTEWrapper
,
makeTuneWrapper
,
makeWeightedClassesWrapper