optimizeSubInts for normal binary class problems and cma_es
for multiclass and multilabel problems.
tuneThreshold(pred, measure, task, model, nsub = 20L, control = list())Prediction]
Prediction object.Measure]
Performance measure to optimize.
Default is the default measure for the task.Task]
Learning task. Rarely neeeded,
only when required for the performance measure.WrappedModel]
Fitted model. Rarely neeeded,
only when required for the performance measure.integer(1)]
Passed to optimizeSubInts for 2class problems.
Default is 20.list]
Control object for cma_es when used.
Default is empty list.list]. A named list with with the following components:
th is the optimal threshold, perf the performance value.
TuneControl,
getNestedTuneResultsOptPathDf,
getNestedTuneResultsX,
getTuneResult,
makeModelMultiplexerParamSet,
makeModelMultiplexer,
makeTuneWrapper, tuneParams