
Last chance! 50% off unlimited learning
Sale ends in
A simple Dictionary storing objects of class Task.
Each task has an associated help page, see mlr_tasks_[id]
.
This dictionary can get populated with additional tasks by add-on packages.
For a more convenient way to retrieve and construct tasks, see tsk()
.
R6::R6Class object inheriting from mlr3misc::Dictionary.
See Dictionary.
as.data.table(dict)
Dictionary -> data.table::data.table()
Returns a data.table::data.table()
with columns "key"
, "task_type"
, "measures"
, "nrow"
, "ncol"
and
the number of features of type "lgl"
, "int"
, "dbl"
, "chr"
, "fct"
and "ord"
as columns.
Example tasks: iris
(multi-class classification), spam
(binary classification), boston_housing
(regression)
Sugar function: tsk()
Other Dictionary: mlr_learners
,
mlr_measures
,
mlr_resamplings
,
mlr_task_generators
Other Task: TaskClassif
,
TaskRegr
, TaskSupervised
,
Task
# NOT RUN {
as.data.table(mlr_tasks)
task = mlr_tasks$get("iris") # same as tsk("iris")
head(task$data())
# Add a new task, based on a subset of iris:
data = iris
data$Species = factor(ifelse(data$Species == "setosa", "1", "0"))
task = TaskClassif$new("iris.binary", data, target = "Species", positive = "1")
# add to dictionary
mlr_tasks$add("iris.binary", task)
# list available tasks
mlr_tasks$keys()
# retrieve from dictionary
mlr_tasks$get("iris.binary")
# remove task again
mlr_tasks$remove("iris.binary")
# }
Run the code above in your browser using DataLab