Splits data repeats
(default: 10) times using a folds
-fold (default: 10) cross-validation.
The iteration counter translates to repeats
blocks of folds
cross-validations, i.e., the first folds
iterations belong to
a single cross-validation.
R6::R6Class()
inheriting from Resampling.
ResamplingRepeatedCV$new() mlr_resamplings$get("repeated_cv") rsmp("repeated_cv")
See Resampling.
See Resampling. Additionally, the class provides two helper function to translate iteration numbers to folds / repeats:
folds(iters)
integer()
-> integer()
Translates iteration numbers to fold number.
repeats(iters)
integer()
-> integer()
Translates iteration numbers to repetition number.
repeats
:: integer(1)
Number of repetitions.
folds
:: integer(1)
Number of folds.
Dictionary of Resamplings: mlr_resamplings
as.data.table(mlr_resamplings)
for a complete table of all (also dynamically created) Resampling implementations.
# NOT RUN {
# Create a task with 10 observations
task = tsk("iris")
task$filter(1:10)
# Instantiate Resampling
rrcv = rsmp("repeated_cv", repeats = 2, folds = 3)
rrcv$instantiate(task)
rrcv$iters
rrcv$folds(1:6)
rrcv$repeats(1:6)
# Individual sets:
rrcv$train_set(1)
rrcv$test_set(1)
intersect(rrcv$train_set(1), rrcv$test_set(1))
# Internal storage:
rrcv$instance # table
# }
Run the code above in your browser using DataLab