This task specializes Task and TaskSupervised for regression problems.
The target column is assumed to be numeric.
The task_type
is set to "regr"
.
Predefined tasks are stored in the dictionary mlr_tasks.
mlr3::Task
-> mlr3::TaskSupervised
-> TaskRegr
new()
Creates a new instance of this R6 class.
The function as_task_regr()
provides an alternative way to construct regression tasks.
TaskRegr$new(id, backend, target, extra_args = list())
id
(character(1)
)
Identifier for the new instance.
backend
(DataBackend)
Either a DataBackend, or any object which is convertible to a DataBackend with as_data_backend()
.
E.g., a data.frame()
will be converted to a DataBackendDataTable.
target
(character(1)
)
Name of the target column.
extra_args
(named list()
)
Named list of constructor arguments, required for converting task types
via convert_task()
.
truth()
True response for specified row_ids
. Format depends on the task type.
Defaults to all rows with role "use".
TaskRegr$truth(rows = NULL)
rows
integer()
Row indices.
numeric()
.
clone()
The objects of this class are cloneable with this method.
TaskRegr$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/tasks.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Task:
TaskClassif
,
TaskSupervised
,
TaskUnsupervised
,
Task
,
mlr_tasks_boston_housing
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
,
mlr_tasks
# NOT RUN {
task = as_task_regr(palmerpenguins::penguins, target = "bill_length_mm")
task$task_type
task$formula()
task$truth()
task$data(rows = 1:3, cols = task$feature_names[1:2])
# }
Run the code above in your browser using DataLab