Learn R Programming

mlr3 (version 0.13.1)

mlr_learners_regr.rpart: Regression Tree Learner

Description

Parameter xval is set to 0 in order to save some computation time. Parameter model has been renamed to keep_model.

Arguments

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("regr.rpart")
lrn("regr.rpart")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, rpart

Parameters

Id Type Default Range Levels
cp numeric 0.01 \([0, 1]\) -
keep_model logical FALSE - TRUE, FALSE
maxcompete integer 4 \([0, \infty)\) -
maxdepth integer 30 \([1, 30]\) -
maxsurrogate integer 5 \([0, \infty)\) -
minbucket integer - \([1, \infty)\) -
minsplit integer 20 \([1, \infty)\) -
surrogatestyle integer 0 \([0, 1]\) -
usesurrogate integer 2 \([0, 2]\) -
xval integer 10 \([0, \infty)\) -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRpart

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

LearnerRegrRpart$new()

Method importance()

The importance scores are extracted from the model slot variable.importance.

Usage

LearnerRegrRpart$importance()

Returns

Named numeric().

Method selected_features()

Selected features are extracted from the model slot frame$var.

Usage

LearnerRegrRpart$selected_features()

Returns

character().

Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrRpart$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

References

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification And Regression Trees. Routledge. 10.1201/9781315139470.

See Also

  • Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners

  • Package mlr3learners for a solid collection of essential learners.

  • Package mlr3extralearners for more learners.

  • Dictionary of Learners: mlr_learners

  • as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).

  • mlr3pipelines to combine learners with pre- and postprocessing steps.

  • Package mlr3viz for some generic visualizations.

  • Extension packages for additional task types:

    • mlr3proba for probabilistic supervised regression and survival analysis.

    • mlr3cluster for unsupervised clustering.

  • mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.

Other Learner: LearnerClassif, LearnerRegr, Learner, mlr_learners_classif.debug, mlr_learners_classif.featureless, mlr_learners_classif.rpart, mlr_learners_regr.debug, mlr_learners_regr.featureless, mlr_learners