Binary classification measure defined as $$ \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}. $$ Also know as "recall" or "sensitivity".
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
mlr_measures$get("sensitivity")
msr("sensitivity")
Type: "binary"
Range: \([0, 1]\)
Minimize: FALSE
Required prediction: response
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc,
mlr_measures_classif.auc,
mlr_measures_classif.bacc,
mlr_measures_classif.bbrier,
mlr_measures_classif.ce,
mlr_measures_classif.costs,
mlr_measures_classif.dor,
mlr_measures_classif.fbeta,
mlr_measures_classif.fdr,
mlr_measures_classif.fnr,
mlr_measures_classif.fn,
mlr_measures_classif.fomr,
mlr_measures_classif.fpr,
mlr_measures_classif.fp,
mlr_measures_classif.logloss,
mlr_measures_classif.mbrier,
mlr_measures_classif.mcc,
mlr_measures_classif.npv,
mlr_measures_classif.ppv,
mlr_measures_classif.precision,
mlr_measures_classif.recall,
mlr_measures_classif.specificity,
mlr_measures_classif.tnr,
mlr_measures_classif.tn,
mlr_measures_classif.tpr,
mlr_measures_classif.tp
Other binary classification measures:
mlr_measures_classif.auc,
mlr_measures_classif.bbrier,
mlr_measures_classif.dor,
mlr_measures_classif.fbeta,
mlr_measures_classif.fdr,
mlr_measures_classif.fnr,
mlr_measures_classif.fn,
mlr_measures_classif.fomr,
mlr_measures_classif.fpr,
mlr_measures_classif.fp,
mlr_measures_classif.mcc,
mlr_measures_classif.npv,
mlr_measures_classif.ppv,
mlr_measures_classif.precision,
mlr_measures_classif.recall,
mlr_measures_classif.specificity,
mlr_measures_classif.tnr,
mlr_measures_classif.tn,
mlr_measures_classif.tpr,
mlr_measures_classif.tp