if (FALSE) { # rlang::is_installed("rpart") && rlang::is_installed("ranger")
library("mlr3")
library("mlr3learners")
# Setup the Fairness Measures and tasks
task = tsk("adult_train")$filter(1:500)
learner = lrn("classif.ranger", predict_type = "prob")
learner$train(task)
predictions = learner$predict(task)
design = benchmark_grid(
tasks = task,
learners = lrns(c("classif.ranger", "classif.rpart"),
predict_type = "prob", predict_sets = c("train", "test")),
resamplings = rsmps("cv", folds = 3)
)
bmr = benchmark(design)
fairness_measure = msr("fairness.tpr")
fairness_measures = msrs(c("fairness.tpr", "fairness.fnr", "fairness.acc"))
# Predictions
compare_metrics(predictions, fairness_measure, task)
compare_metrics(predictions, fairness_measures, task)
# BenchmarkResult and ResamplingResult
compare_metrics(bmr, fairness_measure)
compare_metrics(bmr, fairness_measures)
}
Run the code above in your browser using DataLab