if (FALSE) { # rlang::is_installed("rpart") && rlang::is_installed("ranger")
library("mlr3")
library("mlr3learners")
library("ggplot2")
# Setup the Fairness measure and tasks
task = tsk("adult_train")$filter(1:500)
learner = lrn("classif.ranger", predict_type = "prob")
fairness_measure = msr("fairness.tpr")
# Example 1 - A single prediction
learner$train(task)
predictions = learner$predict(task)
fairness_accuracy_tradeoff(predictions, fairness_measure, task = task)
# Example2 - A benchmark
design = benchmark_grid(
tasks = task,
learners = lrns(c("classif.featureless", "classif.rpart"),
predict_type = "prob", predict_sets = c("train", "test")),
resamplings = rsmps("cv", folds = 2)
)
bmr = benchmark(design)
fairness_accuracy_tradeoff(bmr, fairness_measure)
}
Run the code above in your browser using DataLab