Learn R Programming

mlr3fairness (version 0.4.0)

mlr_learners_classif.fairzlrm: Classification Fair Logistic Regression With Covariance Constraints Learner

Description

Calls fairml::zlrm from package fairml.

Arguments

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("classif.fairzlrm")
lrn("classif.fairzlrm")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, fairml, CVXR

Parameters

IdTypeDefaultLevelsRange
unfairnessnumeric-\([0, 1]\)
intersectlogicalTRUETRUE, FALSE-

Author

pfistfl

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifFairzlrm

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage

LearnerClassifFairzlrm$new()


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifFairzlrm$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Details

Generalized fair regression model from Zafar et al., 2019 implemented via package fairml. The 'unfairness' parameter is set to 0.05 as a default. The optimized fairness metric is statistical parity.

References

BJ Z, I V, M G, KP G (2019). “Fairness Constraints: a Flexible Approach for Fair Classification.” In Journal of Machine Learning Research, 30, 1-42.

See Also

Dictionary of Learners: mlr3::mlr_learners

Other fairness_learners: mlr_learners_classif.fairfgrrm, mlr_learners_regr.fairfrrm, mlr_learners_regr.fairnclm, mlr_learners_regr.fairzlm

Examples

Run this code
if (FALSE) { # rlang::is_installed("fairml")
library("mlr3")
# stop example failing with warning if package not installed
learner = suppressWarnings(mlr3::lrn("classif.fairzlrm"))
print(learner)

# available parameters:
learner$param_set$ids()
}

Run the code above in your browser using DataLab