Learn R Programming

mlr3fairness (version 0.4.0)

mlr_learners_regr.fairfrrm: Regression Fair Ridge Regression Learner

Description

If more than one pta columns are provided, the hyperparameter intersectional controls whether intersections of protected groups are formed (e.g. combinations of gender and race). Initialized to TRUE. If FALSE, only the group specified by the first element of pta is used.

Calls fairml::frrm from package fairml.

Arguments

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("regr.fairfrrm")
lrn("regr.fairfrrm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, fairml

Parameters

IdTypeDefaultLevelsRange
lambdanumeric0\([0, \infty)\)
definitioncharactersp-komiyamasp-komiyama, eo-komiyama-
save.auxiliarylogicalFALSETRUE, FALSE-
unfairnessnumeric-\([0, 1]\)

Author

pfistfl

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrFairfrrm

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage

LearnerRegrFairfrrm$new()


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrFairfrrm$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Details

Fair ridge regression learner implemented via package fairml. The 'unfairness' parameter has been initialized to 0.05.

References

Scutari M, Panero F, Proissl M (2021). “Achieving Fairness with a Simple Ridge Penalty.” arXiv preprint arXiv:2105.13817.

See Also

Dictionary of Learners: mlr3::mlr_learners

Other fairness_learners: mlr_learners_classif.fairfgrrm, mlr_learners_classif.fairzlrm, mlr_learners_regr.fairnclm, mlr_learners_regr.fairzlm

Examples

Run this code
if (FALSE) { # rlang::is_installed("fairml")
library("mlr3")
# stop example failing with warning if package not installed
learner = suppressWarnings(mlr3::lrn("regr.fairfrrm"))
print(learner)

# available parameters:
learner$param_set$ids()
}

Run the code above in your browser using DataLab